1.45

$$
\begin{align*}
& \varphi=\arcsin \left(\frac{R}{x_{0}+v t}\right) \tag{1.1}\\
& \omega=\frac{d \varphi}{d t}=\frac{1}{\sqrt{1-\left(R /\left(x_{0}+v t\right)\right)^{2}}} \cdot \frac{R v}{\left(x_{0}+v t\right)^{2}}= \tag{1.2}\\
& =\frac{R v}{\left(x_{0}+v t\right) \sqrt{\left(x_{0}+v t\right)^{2}-R^{2}}}
\end{align*}
$$

